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Interpreting microarray data to build models of microbial genetic 
regulation networks 

Bahrad A. Sokhansanj*, Janine €3. Garnham, J. Patrick Fitch 

Biology & Biotechnology Research Program, Lawrence Livermore National Laboratory, 
University of California, Livermore, CA, USA, 94550 

ABSTRACT 

Microarrays and DNA chips are an efficient, high-throughput technology for measuring temporal changes in the 
expression of message RNA (mRNA) from thousands of genes (often the entire genome of an organism) in a single 
experiment. A crucial drawback of microarray experiments is that results are inherently qualitative: data are generally 
neither quantatively repeatable, nor may microarray spot intensities be calibrated to in vivo mRNA concentrations. 
Nevertheless, microarrays represent by the far the cheapest and fastest way to obtain information about a cell s global 
genetic regulatory networks. Besides poor signal characteristics, the massive number of data produced by microarray 
experiments poses challenges for visualization, interpretation and model building. Towards initial model development, 
we have developed a Java tool for visualizing the spatial organization of gene expression in bacteria. We are also 
developing an approach to inferring and testing qualitative fuzzy logic models of gene regulation using microarray data. 
Because we are developing and testing qualitative hypotheses that do not require quantitative precision, our statistical 
evaluation of experimental data is limited to checking for validity and consistency. Our goals are to maximize the impact 
of inexpensive microarray technology, bearing in mind that biological models and hypotheses are typically qualitative. 

Keywords: microarrays, bacteria, gene regulation, fuzzy logic, modeling and simulation 

1. INTRODUCTION 

Technological advances in DNA sequencing have led to the complete sequencing of the human genome (approx. 30,000 
genes) and the feasibility of sequencing an entire microbial genome (approx. 500-5000 genes) in a matter of weeks or 
even days. However, the sequence of genes is only the parts list for the cell. Cellular function arises from the 
interaction of proteins and regulatory sequences in DNA governed by the response to environmental stimuli and signals 
from other cells, with multiple feedback as illustrated in Fig. 1. 
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Figure 1: Coding sections of the DNA sequence (genes) are expressed : transcribed to message RNA (mRNA). The mRNA is then 
translated to proteins that catalyze metabolic reactions and form cellular structures, determining cell function. Some regulatory 
proteins interact with regulatory sections of DNA to control the transcription rate of,mRNA; in genenl, regulatory feedback can occur 
at any step of protein production. 

Large-scale biology is now in its Post-Sequencing era, characterized by engineering advances ' towards temporal 
profiling of gene and protein expression, high-throughput protein structure prediction and determination, and 
identification of protein-protein interactions. Transcription profiling techniques, such as photolithographic Affymetrix 
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DNA chips2 and spotted glass microarrays with optical fluorescence detection3, allow the simultaneous measurement of 
mRNA expression from each genes in a cell s complete genome. A typical two-sample competitive hybridization 
microarray experiment is described in the schematic shown in Fig. 2. After fluorescence images are analyzed, the usual 
result of a microarray experiment is the relative expression of each gene: the ratio of fluorescent intensity under one 
experimental stimulus to intensity under the other stimulus (or control ~ t a t e ) ~ .  Taking a ratio magnifies already 
considerable sources of experimental uncertainty. Microarray fabrication is often inconsistent: the size, shape, and 
alignment of spots vanes from array to array, resulting in poor repeatability. Defects in the slide or incomplete washing, 
can result in local regions of higher background. Finally, results are highly sensitive to methods of image analysis, such 
as spot recognition, intensity quantification, dye intensity normalization, and background subtraction5. There are more 
consistent fabrication and analysis methods for DNA chips; however, they are still sensitive to experimental protocols 
and are considerably more expensive than glass microarrays. 
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Figure 2: DNA microarray experiment measuring changes in gene expression. Message RNA is isolated from two samples of cells 
exposed to a different set of conditions, e.g. temperatures of 26iC and 37iC. The mRNA from each sample is separately labeled with 
two distinct fluorescent dyes (by PCR to labeled cDNA). The array is spotted with single stranded DNA corresponding to each gene 
in the genome. Sample targets are added to the array, where they hybridize with complementary cDNA probes. After washing, the 
fluorescence signal of each dye measured at a spot corresponding to a particular gene is proportional to the amount of mRNA 
produced by that gene in the respective sample. 

Even with all the well-known drawbacks of microarray experiments, they remain very popular. Microarrays are 
relatively fast and cheap, and arrays are currently the only practical method for whole genome expression studies 
required to identify the global regulatory networks of the cell. There has been considerable recent work to improve 
quantification of microarray results and apply novel statistical methods, e.g. to replace lost data, filter noise, study the 
effect of replication, etc.6. However, the advent of RT-PCR, which can provide a rapid and accurate assay for a hundred 
genes at a time, allows scientists to confirm the behavior of genes of interest found in microarray experiments. Thus, it 
seems that microarray experiments are most useful to identify global expression patterns, build and test initial rough 
draft system models, and screen for genes and subpathways to study more closely with more accurate methods and 
knockout experiments. The two most important goals are determining whether past models of regulation remain 
consistent with genome-scale data and identifying unexpected expression patterns. Biological models are typically 
linguistic andor  graphical: behavior is described using phrases like weakly inhibited or strongly expressed . Fuzzy 
logic models based on linguistic rules’ have been successfully used to practically model control systems that are 
structurally similar to biological pathways. Working within the limitations of typical microarray data quality, we are 
developing a framework for qualitative modeling using fuzzy logic to help achieve the goal of deriving maximum value 
from microarrays. 



Before biologists can begin building models and screening for genes of interest, it is necessary to organize the massive 
amount of data from microarray experiments (thousands of data points for each gene, frequently taken at several time 
points). The most popular approach has been to cluster genes according to similar temporal profiles of expression’. 
Several methods have been proposed; however, all are in question due to the complexity of genome regulation in 
eukaryotic cells (cells with a nucleus, e.g. yeast, mice, human cells). However, while gene regulation in bacteria 
(prokaryotic cells that lack a nucleus) is not yet perfectly understood, regulatory mechanisms are much less diverse 
and better understood. Microarrays are particular useful for studying cell function of bacteria. Unlike in eukaryotic cells, 
mRNA transcript in bacteria is very unstable and proteins are relatively ‘short-lived, thus protein production in bacteria 
closely tracks transient changes in mRNA transcription. Thus, microarrays give a fairly good indication of the protein 
activity of the bacteria as well, making arrays even more comprehensive and useful for studies of bacterial regulation. 
Analysis of transcription patterns is also easier for bacteria than eukaryotic cells because genes are generally regulated in 
simple linear blocks. The block structure of transcriptional regulation is illustrated in Fig. 3 for the lac operon of E. coli, 
the most studied system of gene regulation. The transcription of several genes in a consecutive sequence (operon) along 
the chromosome occurs simultaneously with common regulatory sites. In some cases, short regulatory sequences 
between genes can attenuate or enhance the transcription of some genes in the operon. We have developed a Java tool to 
help identify operons and their common regulatory features from microarray experiments. 

P1 lac1 P2 lacZ lacy lacA 

Figure 3: Part of the E. coli chromosome coding for the enzymes responsible for lactose metabolism (proteins coded by genes lacZ 
and lacy). The DNA sequence includes promoter regions where RNA polymerase (RNAP) binds to begin transcribing the genes in 
the operon. At the end of the operon is a terminator region where the RNAP detaches. The lac1 gene produces a protein that normally 
binds to the promoter of lacZ and lacy (PZ), blocking their transcription by RNAP. When lactose is present, it binds to lac1 allowing 
the RNAP molecule to continue down the operon and produce enzymes to consume the lactose. Once the lactose is gone, lac1 again 
hinds to P2 and lacZ and lacy transcription ceases, thus the lac operon is a negative feedback system. 

2. MICROARRAY DATA ANALYSIS 

In our laboratory, we are using microarrays to reveal temporal profile global regulation of the Yersinia pestis low 
calcium response . Virulence factors coded on the plasmids of Y. pestis, the bacteria that cause plague, are induced in 
vitro when the temperature increases to 37iC from 26iC and Ca” is absent, mimicking conditions inside human tissue 
during infection. There is evidence the Y. pestis chromosome also contains genes involved in virulence, and those genes 
are also controlled by temperature and Ca2+ concentration changes. The goals of our microarray experiments are to 
verify previous models of virulence regulation, screen for previously unknown genes and operons involved in low 
calcium response, and ideally build the rough drafts of new regulatory models. 

Accurate measurement of transcription is not an objective of our experiments. Key discoveries will be verified using 
more accurate (and lower throughput) technologies. Thus, our prcliminar,y data analysis has the primary objective of 
ensuring as many interesting signals are found as possible, and reducing the number of false positives (which increases 
the required number of costly verification experiments). At the same time, we can not afford large numbers of replicant 
experiments, and thus can not use many of the sophisticated statisticd tools discussed in recent Iiterature. There are 
repeated spots on each chip to test variation between spots. However, there are no repeated chips: the variation from chip 
to chip is often so high that as many as ten replicant slides would be required to achieve statistical signifkance. Rather, 
we try to establish the consistency of data in two ways. For each time point, we measure six slides: the ratio of each 
combination (of 26iC/No Ca2+, 37iC/NO Ca*+, and 37iC/w. CaZ4) and each ratio with dye colors reversed. 

. 
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Fig. 4 illustrates how differences in dye binding characteristics and background require data normalization. We do not 
subtract for background, as recent studies have shown that unhybridized spots typically have very low intensities. 
Consequently, the most accurate background values are lower than those given by software (which usually takes into 
account local background around the spot). Dye intensities are normalized by dividing by the ratio of median intensities. 
The median is used because the mean is influenced by long tails resulting from transcription induced by the stimulus. In 
principle, the majority of genes should be unregulated in response to a specific stimulus, with a transcription ratio of 
approximately one. This assumption is not necessarily true in cases where the stimulus could cause a broad change in the 
transcription of many genes: this is observed in studies of cell cycle, starvation, etc. Temperature increase generally 
increases the metabolic rate and thus perhaps transcription as well, and the normalization will likely smooth out that 
effect. However, we would like to isolate and identify genetic mechanisms of thermoregulation, as opposed to any broad 
increase in transcription due to increased metabolism. 
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Figure 4: Intensity histograms for two dyes yV. L. Motin, unpublished data]. 

Once expression ratios have been obtained, we then apply a variety of methods to identify biologically interesting 
signals: standard deviations from the mean and other threshholds', Bayesian methods", and a plethora of methods 
developed by the statistics community". Gene expression is also characterized in the context of operons, as discussed 
below. However, the statistical significance of our results suffers considerably due to the low number of replicants. As 
an additional verification of the significance of a gene expression ratio, we apply its closure relationship. Given 3 
experimental conditions (i.e. A, B, and C) measured in all three combinations, the product of expression ratios for a 
particular gene should be unity, Le. 

A B C  
B C A  
-.-.-= 

or, using the (base 2) log of expression ratios that is usually reported, 

log( +) + log($) + log( :) +log(@) = 0 

where $ is a term representing a closure error phase, representing the relative error between the experiments. Fig. 5 
shows a histogram of log($) for genes in the set of six microarray experiments performed at a given time point. A 
perfectly consistent result has a log($) of zero. Each ratio is taken as the average of the two reverse color experiments. 
This measure of consistency is used in conjunction with replicants to evaluate the risk that a gene expression signal is a 
false positive. 
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Figure 5:  Histogram of closure error phases, log($) representing the relative error between experiments taken at different conditions. 

3. OPERON IDENTIFICATION 

Bacterial genes are spatially organized in operons as s h o w  in Fig. 3 (though some operons only contain a single gene 
with its associated promoteT). When gene expression is plotted in the spatial order of genes, correlation in gene 
expression signifies the potential for a continuous operon, illustrated in Fig. 6. This result suggests that we can apply 
several methods available to automatically recognize hypothetical operons, and these may be coupled with efforts to 
computationally predict operons based on sequence similarity and motifsl3. 

Log Expression 

P 

- 2 1  .A 

-7- - -  --_rl__ - - 
I 

0 20 40 60 80 100 120 140 160 180 ZOO 
-3 c ____ ~ 

ORF 

Figure 6 .  Gene expression in linear sequence along the plasmids of Y. pestis. Three expression ratios are shown, corresponding to 
combinations of'the three expenmental stimuli descnbed previously Correlated expression signifies a potential operon. 

While automatic signal detection has an important role in locating features of large microarray data sets, there is no 
replacement for biological intuition. An important priority of our work is to allow biologists to visually navigate gene 
expression data and use their intuition to locate patterns of potential interest. Towards this goal, we have developed a 
Java applet that can be used to display the results ofmicroarray time series for genes in circular chromosomes and 
plasmids. Screen shots of the Gene Viewer software are shown in Fig. 7. Features of the software include the ability to 
modify display scales and colors, zoom into regions of interest, simultaneously display multiple experiments, animate 
time series, and display annotation and sequence. In future versions, we plan to integrate the Gene Viewer with fuzzy 
models of regulatory pathways. 



Figure 7: Screen shots of Gene Viewer software. Expression of the main chromosome of Y. pestis is displayed (approx. 4,000 genes), 
with six data sets shown. Each bar (see the bottom image for detail) is the expression of a gene. The angular position of each gene is 
exact. If a gene is coded in the forward direction, it is above the reference line, if it is in the reverse direction it is shown below the 
reference line. Green and red represent positive and negtive log ratios, while the height ofthe bars is proportional to expression level. 
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4. FUZZY REGULATORY MODELS 

Typically, biologists qualitatively model a regulatory system, describing it in text or a diagram (e.g. see the schematic of 
the E. coli lac operon and accompanying caption of Fig. 9). Experimental results in biology are usually not quantitative 
(e.g. microarray data). While data may be analyzed quantitatively (e.g. enzyme assay), the intended conclusion is usually 
either qualitative ( more or less ) or acceptance/rejection of a hypothesis. Thus, experimental work is focused on 
making sure data are internally consistent and allow statistically valid conclusions, not generating accurate parameters 
for modeling the system chemically. As systems become more complex, qualitatively mental models become harder to 
develop and interpret. For complex biological systems as a system of equations (requiring accurate parameters) or as a 
binary logic network (odoff models are too simple to model many interactions). We propose thatfuzzy Zogic is a natural 
language for modeling biology. 

4.1 Fuzzy Modeling 
A detailed discussion of fuzzy logic and modeling is outside the scope of this paper (see reviews e l s e ~ h e r e ' ~ ~ ' ~ ) .  Briefly, 
fuzzy set theory is a generalization of classical set theory in which set membership becomes a degree continuously 
varying from 0 to 1 .O (where 0 represents absolute non-membership or false , and 1 .O corresponds to classical set 
membership or true ). Fuzzy sets can be used to represent quantities, e.g. LOW, MED, and HIGH protein levels in a 
cell. Fig. 8 shows how quantitative values can be&zzified, translated into a union of fuzzy set membership values. The 
inverse operation (defuzzzification) is also possible, fuzzy logic models can be used in combination with quantitative data 
and models. 

Membership 
I 

Conc. = 0.25 pM 
{Low, Med, High} = (0.5, 0.4, 0.0) 

ntration 

0 0.2 0.4 0.6 0.8 1.0 
Figure 8: Fuzzification of a concentration (0.25 M) given a graphical definition of fuzzy concentration categories ( Low,  Med , 
and High ). 

Fuzzy versions of logical operators like AND and OR can be defined in many different ways. The simplest definition is 
to take the minimum of fuzzy set memberships for AND and maximum for OR. For example, given concentrations C1 = 
{OS, 0.4, 0.0) and C2 = iO.1, 0.6, 0.2); C1 AND C2 = { O . l ,  0.4, O.O), C1 OR C2 = i0.5, 0.6, 0.2). Another definition is 
product of memberships for AND and sum for OR, i.e. C1 AND C2 = IO.05, 0.25, 0.0). A fuzzy rule typically takes the 
form IF C1 AND C2 THEN Q . In the simple variants of fuzzy logic we use in our models (midmax, sudproduct), 
IF/THEN is synonymous with AND. In general, each node of a fuzzy model must have a rule accounting for every 
possible input state. For example, 

IF C1 AND CZ THEN Q 

where C1 and C2 have 3 categories (Low, Med, High) there will be 3' = 9 rules, e.g. 
IF (C1= Low) AND (C2 = Low) THEN (Q = Slow), 
IF (C1 = Low) AND (C2 = Med) THEN (Q = Slow), . . . 

IF (C1 = Med) AND (C2 = High) THEN (Q = Fast), . 

IF (C1 = High) AND (C2 = High) THEN (Q = Fast). 

. . .  

. . .  
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If our model includes a node for the production level of a protein that depends on the strength of two promoters, 
translation rate, temperature, and 5 regulatory proteins (total of 9 inputs), that node alone would require S9 = 1,953,125 
rules! This curse of dimensionality has sharply limited the general use of fuzzy models for complex systems: most 
solutions (e.g. clustering, redundant rule elimination, etc.) are problem-specific and require significant domain 
knowledge. However, recently Combs has proposed an alternative format for fuzzy models called the Union Rule 
Configuration (URC)'7-1s. With this configuration, the above node would be rewritten as: 

IF (C1 = Low) THEN (Q1= Slow), 
IF (C1= High) THEN (Q1= Fast), 
IF (C2 = Med) THEN (Q2 = Med), 
Q = Q1 OR QZ. 

IF (C1= Med) THEN (Q1 =Fast), 
IF (C2 = Low) THEN (42 = Slow), 
IF (C2 = High) THEN (Q2 = Fast), 

Now, the node only contains 3*2 = 6 rules. With the URC, instead of growing exponentially with the number of inputs 
or fuzzy states, the complexity of the node grows linearly. Now, our example of the 9 input protein production model 
requires only 5*9 = 45 rules, and URC fuzzy logic becomes a computationally feasible modeling framework for 
complex biological systems. Fig. 9 shows the URC fuzzy model for the lactose regulation system of E. coli. In this case, 
the model includes both the production rates of proteins and their activity levels, along with promoter efficiencies. 
Quantitative data for the concentration of extracellular glucose and lactose may be fuzzification for use in the model. 
Fuzzy values of the model variables may be defuzzified and compared to quantitative data, or used as a fuzzy data point 
for comparison with qualitative data (e.g. result of a microarray experiment). 

DNA (lac operon) 

Represses .-..-- 

Figure 9: Schematic and fuzzy models of E. coli lac operon regulation, showing enzymes (IacZ and lacy), substrates (glucose and 
lactose), regulatory proteins (CAMP and lad), and promoters (P(lac1) and P(1acZY)) and genes in the linear sequence found on the 
chromosome. Lac operon is regulated by two kinds of negative feedback. One feedback loop is direct repression in absence of lactose, 
mediated by lac1 interaction shown in Fig. 3. The other feedback loop, repression in abundance of glucose, is regulated by CRP- 
CAMP (shown as CAMP in the 'schematic), which enhances the promoter of lacZ and lacy. Glucose inhibits the activity of CRP- 
CAMP, thus reducing production of IacZY. 

4.2 Comparing Models to Data from Microarray Experiments 
One important criticism of fuzzy physical models is the absence of statistically rigorous means of comparing predictions 
with experimental data and evaluating the performance of alternative models. However, it has already been shown that 
rigorous statements about microarray experiments are difficult to make. Data is of poor quality and not repeatable: if 
microarrays are to be used as 
computation. To compare microarray data with fuzzy predictions, expression ratios are fuzzified. Fig. 10 shows a simple 
scheme that is equivalent to 3 heavily smoothing linear interpolation. Results of all experiments are fkzzified using the 
same scheme, defined for the experiment with the largest dynamic range of ratios. 

' 

screening or rough draft, strict rigor is much less important than rapid and intuitive 
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Figure IO: The fuzzification scheme for a set of microarray data is shown (dashed lines) for categories Very Low , Lower, Med 
(approx. no change), Higher, Very High . It is based on the distribution of log ratios (solid line with diamonds) from a single 
reference experiment (the one with the largest range of ratios). 

The prediction of the fuzzy model is then cast in terms of relative expression, for example, expression with high CaZ* is 
Lower than expression at lower Ca’’ . In general, the model prediction will be a union of fuzzy sets. Fig. 11. shows the 

simplest possible scheme to compare a single experimental data point to its predicted expression ratio. Model accuracy is 
defined by the maximum membership of the data point in the predicted fuzzy set. It corresponds loosely to the concept 
of possibility defined in fuzzy set theory, an analogy to classical probability”: the possibility that the prediction is hue 
given the data point. 
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Figure 1 1 :  Possibility measure a model prediction of (0.3 Med, 0.8 Ffigh, 0.0 all other sets} given a gene with a log ratio of 1.2, based 
on the fuzzificntion scheme of Fig. 10. The resulting possibility (and metric for the prediction) is 0.8. 

Increasingly, microarrays are being used to explore novel organisms and environmental responses with no previously 
described genetic regulation mechanisms. Even for biological problems I with some prior conventional experimental 
investigation, increasing the number of time points and genes being studied by large-scale experiments makes the use of 
intuition less and less feasible. Consequently, an active area of current research is methods to infer models from complex 
data sets, i.e. microarrays and DNA chips. Boolean logic models are limited by a critical lack of resolution, and inverse 
problem solving with differential equations is insufficiently scalable. Previous attempts to learn fuzzy logic models from 
microarray dataig were limited to only considering interactions between up to 2 factors, largely because of the curse of 
dimensionality. URC fuzzy models have a linear relationship between complexity and problem size and scale, thus the 
URC is an ideal framework for inferring models directly from data. Experience has shown that model learning problems 
previously on the scale of supercomputers can now be done using a PC in a few minutes”, particularly with a 
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computationally trivial method for evaluating and comparing models, such as Fig. 11 describes. Approaches to building 
a model directly from data include adopting neural network learning and optimization algorithms (the URC is 
conceptually very similar to a perceptron or neural network model). Ultimately, our goal is to derive maximum value 
from some of the cheapest and easiest experiments available in a contemporary genetics laboratory. In the process we try 
to minimize the required accuracy and repeated experiments to ensure microarrays remain cheap, easy, and convenient 
tools for biologists to gain insight and gather intuition about the complex systems they study. 
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